Graph Similarity-based Hierarchical Clustering of Trajectory Data
نویسندگان
چکیده
منابع مشابه
Graph-Based Approaches to Clustering Network-Constrained Trajectory Data
Clustering trajectory data attracted considerable attention in the last few years. Most of prior work assumed that moving objects can move freely in an euclidean space and did not consider the eventual presence of an underlying road network and its influence on evaluating the similarity between trajectories. In this paper, we present an approach to clustering such network-constrained trajectory...
متن کاملGraph-Based Hierarchical Conceptual Clustering
Hierarchical conceptual clustering has proven to be a useful, although under-explored, data mining technique. A graph-based representation of structural information combined with a substructure discovery technique has been shown to be successful in knowledge discovery. The SUBDUE substructure discovery system provides one such combination of approaches. This work presents SUBDUE and the develop...
متن کاملTitle: Graph-based Hierarchical Conceptual Clustering Graph-based Hierarchical Conceptual Clustering
Hierarchical conceptual clustering has been proven to be a useful data mining technique. Graphbased representation of structural information has been shown to be successful in knowledge discovery. The Subdue substructure discovery system provides the advantages of both approaches. In this paper we present Subdue and focus on its clustering capabilities. We use two examples to illustrate the val...
متن کاملNode Similarity-based Graph Clustering and Visualization
The basis of the presented methods for the visualization and clustering of graphs is a novel similarity and distance metric, and the matrix describing the similarity of the nodes in the graph. This matrix represents the type of connections between the nodes in the graph in a compact form, thus it provides a very good starting point for both the clustering and visualization algorithms. Hence vis...
متن کاملInstance-Based Parameter Tuning via Search Trajectory Similarity Clustering
This paper is concerned with automated tuning of parameters in local-search based meta-heuristics. Several generic approaches have been introduced in the literature that returns a ”one-size-fits-all” parameter configuration for all instances. This is unsatisfactory since different instances may require the algorithm to use very different parameter configurations in order to find good solutions....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Procedia Computer Science
سال: 2020
ISSN: 1877-0509
DOI: 10.1016/j.procs.2020.04.004